A Subdifferential Condition for Calmness of Multifunctions
نویسندگان
چکیده
منابع مشابه
Subdifferential Conditions for Calmness of Convex Constraints
We study subdifferential conditions of the calmness property for multifunctions representing convex constraint systems in a Banach space. Extending earlier work in finite dimensions [R. Henrion and J. Outrata, J. Math. Anal. Appl., 258 (2001), pp. 110–130], we show that, in contrast to the stronger Aubin property of a multifunction (or metric regularity of its inverse), calmness can be ensured ...
متن کاملOn the Calmness of a Class of Multifunctions
The paper deals with the calmness of a class of multifunctions in finite dimensions. Its first part is devoted to various conditions for calmness, which are derived in terms of coderivatives and subdifferentials. The second part demonstrates the importance of calmness in several areas of nonsmooth analysis. In particular, we focus on nonsmooth calculus and solution stability in mathematical pro...
متن کاملCalmness for L-Subsmooth Multifunctions in Banach Spaces
Using variational analysis techniques, we study subsmooth multifunctions in Banach spaces. In terms of the normal cones and coderivatives, we provide some characterizations for such multifunctions to be calm. Sharper results are obtained for Asplund spaces. We also present some exact formulas of the modulus of the calmness. As applications, we provide some error bound results on nonconvex inequ...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
A COMMUTATIVITY CONDITION FOR RINGS
In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2001
ISSN: 0022-247X
DOI: 10.1006/jmaa.2000.7363